

On the shock response of UHMWPE (Dyneema®)

David Wood

Gareth Appleby-Thomas, Amer Hameed (Cranfield University)
Colin Roberson (Advanced Defence Materials Ltd.)
www.cranfield.ac.uk

Purpose of experiments

- To investigate the shock response of a ultra-high-molecular-weight polyethylene, known as Dyneema® with respect to fibre orientation
- Properties investigated were shock and release velocities, orientations as well as comparisons to other Dyneema® composites
- Useful for understanding post shock elastic and plastic behaviour as well as formation / removal of hot spot zones within explosive materials

Previous work

- Chapman et al. investigated the 0° orientation of a non-specified variety of Dyneema®. Found a non-linear Hugoniot in U_S-u_p plane. No deviation on P-u_p from Hugoniot.
- Hazell et al. non-linear Hugoniot in the U_S-u_p plane agreeing with the Hugoniot found by Chapman et al., no pressure values given. An elastic precursor was seen which disappeared when fibre melting occurred.

Previous work (continued)

- Lässig et al. expanded upon the low (less than 0.17 mm/μs) and high (1 to 2 mm/μs) particle velocities, albeit, a different Dyneema® variety.
 The high u_p values obtained using shock reverberation technique.
 Again a non-linear Hugoniot was found.
- The previous dataset by Hazell et al. will be expanded on with regards to strength measurements as well as release velocities, with new data also added.

Material used

- Dyneema® HB50 from DSM
- Consists of 16 µm unidirectional polyethylene fibres (in a 0°/90° configuration) in a rubber matrix
- Fibre volume fraction is 82%
- The Dyneema® HB50 fibres have elastic sound speed of 11 mm/µs

Material properties

- Dyneema® HB50 investigated with fibres orientated at both 0° and 90° with respect to shock front
- Density is 0.95 g/cc
- Elastic properties of both orientations and polyethylene are

Material / Cloth Angle Degrees	ρ ₀ g/cc	c _L mm/µs	c _s mm/µs	c _B mm/µs	V
Dyneema® 0°	0.95±0.03	2.10±0.10	0.97±0.10	1.78±0.14	0.36
Dyneema® 90°	0.95	8.00±0.30	2.7±0.10	7.34±0.32	0.43±0.01
Polyethylene	0.95±0.02	2.36±0.03	1.01±0.04	2.05±0.05	0.388

Experimental procedure

- Plate impact experiments single stage light gas gun accelerating flat and parallel flyers to 1032 m/s
- Diagnostic employed manganin pressure gauges from Vishay micromeasurements (LM-SS-125CH-048), calibrated according to Rosenberg et al.

Equations employed

Hugoniot tends to be linear and follow the form

$$U_S = c_0 + Su_p$$

Non-linear ones can be used, and are seen primarily with polymers

$$- U_S = c_0 + S_1 u_p + S_2 u_p^2$$

To calculate U_s

$$-$$
 U_S = $\Delta x_0/\Delta t$

To calculate the release velocity U_R

$$- U_R = (1-u_p/U_S)(x_0/\Delta t_R)$$

Experimental trace

Hugoniot in the shock – particle velocity plane

Hugoniot in the stress – particle velocity plane

Linear versus non-linear U_S-u_p Hugoniot

Linear versus non-linear P-u_p Hugoniot

Summary and conclusions

A linear Hugoniot over the investigated range can be used. The equation is

$$U_S = 1.92 + 2.54u_p$$

- Release velocity had a linear equation of U_{release} = 2.43 + 9.63u_p
- In the P-u_p plane, pressure was the same as for polyethylene, not the Hugoniot for Dyneema® as observed by Chapman *et al.*, this however, was for a different composition

Future work

- More data at high end to observe fibre melting, using shock recovery technique for post-impact analysis
- Also with regards to the high end data, more experiments on the shock release behaviour to see if there is an alteration of the release velocity

Acknowledgements

 Special thanks to Andy Roberts for experimental help and Karl Norris for machining of the samples

Questions?

References

- K. Karthikeyan, B. P. Russell, N. A. Fleck, H. N. G. Wadley and V. S. Deshpande, The Effect of Shear Strength on the Ballistic Response of Laminated Composite Plates, *European Journal of Mechanics A/Solid*, 42, 2013.
- D.J. Chapman, C.H. Braithwaite and W.G. Proud, The Response of Dyneema to Shock-Loading, *American Physical Society, 16th APS Topical Conference on Shock Compression of Condensed Matter,* 2009.
- P.J. Hazell, G.J. Appleby-Thomas, X. Trinquant and D.J. Chapman, In-Fiber Shock Propagation in Dyneema, *Journal of Applied Physics*, 110,2011.
- J.C.F. Millett and N.K. Bourne, The Shock Induced Equation of State of Three Simple Polymers, Journal of Physics D: Applied Physics, 37, 2004.
- Z. Rosenberg, D. Yaziv and Y. Partom, Calibration of foil like manganin gauges in planar shock wave experiments, *Journal of Applied Physics*, 51, 1980.